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A P P L I C A T I O N  O F  T H E  G R A D I E N T  S T R E N G T H  C R I T E R I O N  A N D  T H E  

B O U N D A R Y - E L E M E N T  M E T H O D  T O  A P L A N E  S T R E S S - C O N C E N T R A T I O N  P R O B L E M  

A. S. Sheremet  and M. A. Legan UDC 539.375 

A numerical algorithm for strength analysis of plane structural elements with stress 
concentrators is developed using the gradient strength criterion and the boundary-element 
method. As the first calculation test, the brittle fracture of a plate with a circular hole in tension 
is evaluated. To verify the algorithm and to compare the results of analysis with experimental 
data available in the literature, we consider symmetric and asymmetric problems of fracture 
of glass plates with a narrow elliptic hole in tension and compression. For all the problems, 
the accuracy of numerical results is estimated by comparison with analytical solutions. In 
comparison with the classical criteria, the use of the gradient strength criterion leads to better 
agreement between theoretical estimates and experimental data. 

1. F o r m u l a t i o n  o f  t h e  P r o b l e m .  To answer the question of where and at which load a structural 
element with a stress concentrator begins to fail, we use a gradient approach: the nonuniformity of the stress 
state reduces the breaking ability of the stress in the region of maximum values, i.e., reduces its effectiveness. In 
[1, 2], Legan formulated a two-parameter gradient strength criterion. According to this criterion, to determine 
the breaking load, one should compare not the first principal stress al (used as the equivalent stress) but a 
certain effective stress Ore = Orl/f(gl, L1, ~), which is less than the equivalent stress, with the ultimate strength 
of the material Orb. The denominator f (gl ,  LI,~) is a function of the stress-field nonuniformity at the point 
of the body considered and two parameters that depend on the material properties. The effective stress is 
calculated by the formula 

Or e = Orll(1 __ # + ~/32 + i l g l ) "  (1.1) 

The stress-state nonuniformity is characterized by the relative gradient of the first principal stress gl = 
Ig radOrll/Orl and is found from the elastic solution of the corresponding problem. The parameter L1 has 
the dimension of length and it is determined from the condition that  the gradient criterion agrees with 
linear fracture mechanics: n l  = (2/r)K~c/or ~, where KIc is the critical coefficient of stress intensity. The 
dimensionless parameter fl, which varies from 0 to 1, takes into account the quasi-brittle nature of. fracture 
and it is calculated as the ultimate strength divided by the modulus of elasticity and the total strain for 
the moment of failure in uniaxial tension: fl = ab/(Er We assume that  fracture begins at a point at the 
concentrator contour where the condition 

Ore = Orb (1.2) 

is satisfied and propagates along the normal to the contour. 
To apply the proposed strength criterion not only to demonstrative but also to practical problems, it 

is necessary to develop a numerical algorithm of strength analysis of structures with stress concentrators with 
the use of the most appropriate numerical method. In this paper, we use the boundary-element method (the 
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method of fictitious loads). In this connection, the main difficulty is the need to determine not only the stress 
components, but also their derivatives with respect to spatial coordinates. 

2. S c h e m e  of  So lu t ion  of  t h e  P r o b l e m .  M a i n  P rob l ems .  We outline a scheme of strength analysis 
of a plate with a stress concentrator with the use of the gradient strength criterion and the boundary-element 
method. 

We confine ourselves to the case of loading the plate where the concentrator contour is free from 
tractions. In this case, one can use a tangential (circumferential) stress at as the first principal stress al at 
the contour of the hole. Thus, for the problem considered, in the gradient strength criterion (1.1) and (1.2), 
we have 

al ---- at, (2.1) 

gl = Igrad atl/at.  (2.2) 

The gradient of the tangential stress is calculated by the formula 

Igrad a,l = ~/(Oo't/Os) 2 + (Oa,/O,,) 2, 

where s and n are the tangent and the outward normal to the contour. 
To apply the criterion (1.1), (1.2), it is necessary to solve the elastic problem of stress concentration 

and to determine the relative gradient of the tangential stress at any point at the contour of the concentrator. 
To solve the elastic problem, we use the boundary-element method in the form of the method of fictitious 
loads [3]. It should be noted that the boundary-element methods require discretization of only the boundary 
of the body, do not use approximations inside the domain, and lead to a fewer number of unknowns compared 
to the finite-element method; therefore, these methods are potentially more exact for stress-concentration 
problems. Better  accuracy is achieved due to the fact that among the boundary-element methods, the method 
of fictitious loads uses an analytic expression for at. 

Using this method, one can determine the values of a~ at the center of each i th boundary element 
at the contour of the concentrator and at the internal points of the plate. The derivatives of the tangential 
stress Oo't/Os and Oat~On at the contour, which are necessary for calculation of the gradient, are determined 
numerically by finite-difference formulas. 

Substituting the values of al and gl calculated by (2.1) and (2.2) for each middle point of the boundary 
elements into expression (1.1) for ae and determining the point where the effective stress is maximum, we 
find the point where the fracture begins. The fracture occurs for the value of the applied load at which the 
effective stress attains the ultimate strength of the material, i.e., when condition (1.2) is satisfied. 

Thus, the scheme of analysis is generally outlined. Now it is necessary to consider more carefully the 
question how to calculate the components of the gradient of at. 

To calculate the derivative Oat/Os of the tangential stress along the tangent s to the contour of the 
concentrator, we use a three-point scheme of numerical differentiation with different steps (Fig. 1). The central 
derivative at the i th point at the contour is calculated from the formula 

�9 ) A82 i - d / , A  oat , . .  at + 
Os "~ tAs2 a~+a + \As1 As2 

where i, i - 1, and i + 1 denote the middle points of the boundary elements, a~, a~ -1, and a~ +I are the 
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corresponding values of at obtained from the elastic solution, A S l  = a i-1 + a i and As2 = a i -{- a i+1 are the 
absolute values of the increments of the arc coordinate s ,  i.e., the lengths of the corresponding arcs, and a i is 
the half-length of the i th boundary element. 

To calculate the derivative O a t / a n  of the tangential stress along the normal n to the contour of the 
concentrator, we use the simplest two-point scheme of numerical differentiation. The derivative for the ith 
point of the contour is calculated by the formula 

ai-4 
On A n  ' 

where a~ and (rt ~ are the values of at at the points i and j ;  the point i is the center of the i th boundary element 
and the point j lies inside the domain of the body and is at a distance An from the point i along the normal 
to the contour, which is taken the same for each point of the contour. 

Precisely at this Stage the following difficulty arises in calculations. Using the boundary-element 
method, one can calculate the stresses at the concentrator contour (at the middle points of the boundary 
elements) and at the internal points of the body. At first sight, the problem is solved. However, the stresses 
at the internal points can be computed, provided these points do not lie "too close" to the boundary. It has 
been found empirically that the solution is unreliable at the points inside a circle whose radius is equal to 
the length 2a of the element and whose center is at the middle point of the boundary element except for this 
middle point [3]. It should be added that the accuracy of the results even for internal points which satisfy 
the above condition and lie sufficiently far from the contour of the concentrator remains one or two orders of 
magnitude poorer than the accuracy of the results for the middle points of the boundary elements. 

Consequently, one should develop a numerical algorithm that provides better accuracy in calculating 
stresses at the internal points of the body, in particular, in the neighborhood of the boundary. 

3. N u m e r i c a l  A l g o r i t h m .  We propose the following numerical algorithm. At a small distance An 
from the boundary elements at the contour of the concentrator (the basic contour), in the body we introduce 
a new boundary-element grid, which forms the auxiliary contour. Using the equations of equilibrium for 
an infinitesimal element that  adjoins the contour of the concentrator, we formulate approximate boundary 
conditions for the auxiliary contour in terms "of known values of the stresses at the basic contour and their 
derivatives with respect to the tangent to the contour. Applying the boundary-dement method to the problem 
for the auxiliary contour and calculating the stresses at the middle of each boundary element, we actually 
determine the stresses at the internal points for the initial problem with higher accuracy. 

C o n s t r u c t i o n  o f  an  A u x i l i a r y  C o n t o u r .  To construct an auxiliary contour, we draw straight lines parallel 
to each boundary element of the basic contour at distances An from them; intersections of the neighboring 
lines are assumed to be the ends of the elements of the auxiliary contour (if two lines coincide, which is the 
case where the initial boundary elements lie on the same line, we shift the common point of these elements a 
distance An along the normal); the middle points of the auxiliary elements are obtained by bisection (Fig. 2) 
of the corresponding segments. 
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Formulation of New Boundary Conditions. To derive the boundary conditions (as and a~) on the 
auxiliary contour, we consider the stresses acting on an infinitesimal element at the boundary of the hole in 
the plate using the polar coordinate system (p, ~). Let the subscripts 1 and 2 refer to the basic and auxiliary 
contours, respectively. 

The boundary of the hole in the plate is free from external loads: 

as 1 ---- O, an  1 = O; (3.1) 

consequently, 

0as . 0 a ~  . 0 a , ~  0 a , ,  . 
as[2 -----as 1 -~- -~p dp = --~p dp, an  2 -~- an[1 + ~ d p  : ---~p dp. (3.2) 

We express the derivatives in (3.2) via the known quantities. The differential equations of equilibrium of the 
element in the polar coordinates are written in the form 

Oa. Oas Oat Oas 
an-+ p Op 0~o a, = 0, 0~2 p -~p  - 2Crs = 0. 

Hence, with allowance for (3.1), we find 

Oa, 1 Oas 1 Oat 
- -  ~ O ' t  , - -  ~ �9 Op p Op p O~ 

Substituting the derivatives obtained into (3.2) and passing to the coordinate system (s, n) (An = dp and 
Os = pO~), we determine as and an at the contour 2 for the element considered: 

as 2 J 
= Oat An, an = - a tAn .  (3.3) 

1 

Os 2 p 

Let k = 1/p be the curvature of the contour 1 at the point considered. To determine the curvature, we use 
the numerical scheme shown in Fig. 3. Here the following notation is introduced: A and C are the first and 
the last points of the ith boundary element, respectively, B is the point of intersection of the actual contour 
of the concentrator and the normal n passing through the middle point of the ith boundary element, OA, 
OB, and Oc are the  angles between the x axis and the tangents to the actual contour of the concentrator at 
the points A, B, and C, respectively, 0 i is the slope angle of the i th boundary element, 01 and 92 are the 
angles between the  x axis and the lines which pass through the middle points of the (i - 1)th and the ith 
and the ith and the (i + 1)th boundary elements, respectively, and kl and k2 are the curvatures of the arcs 
A B  and BC,  respectively; r = 9 i - 91 and r = 92 - 9 i. Setting 01 = OA, 9 i "= OB, ~92 = Oc, kl = ~bl/a i, 
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and k2 = ~b2/a i, we obtain an approximate formula for the  curvature at the  i th point of the  contour of the 
concentrator k i ,.~ (kl + k2)/2. 

Finally, the  boundary  conditions (3.3) for the ith boundary element at the auxiliary contour  are written 
in the form 

4. E x a m p l e s  o f  A n a l y s i s .  E v a l u a t i o n  of  t h e  R e s u l t s .  As the first test problem, we considered a 
plate with a circular hole in tension. Moreover, to verify the algori thm and compare the results of analysis with 
the experimental  da ta  [4], the symmetric and asymmetric problems of failure of glass plates with a narrow 
elliptic hole in tension and compression were considered. 

In all the problems,  we set fl = 1 (brittle fracture). Below, we give the results for five problems. 
Circular Hole in the Plate. We consider Problem 1 of uniaxial tension of an infinite plate  with a circular 

hole of diameter  d (Fig. 4) for d/L1 = 10. The parameter L1 is equal to the critical dimension of a defect of 
the Griffith crack type  [1]. 

A numerical  solution was obtained for division of the boundary of the hole into 60 and 360 boundary 
elements. A boundary-e lement  grid was constructed in such a manner  tha t  the middle points  of the elements 
lie at the symmet ry  axes of the problem. Calculations were performed for An~L1 = 10 -3.  An increase or 
decrease in An by a factor of 10 did not affect the results. 

Elliptic Hole in the Plate. We consider several problems of a plate with a narrow elliptic hole which is 
uniaxially s t re tched or compressed at infinity (Fig. 5): 

- -  Tension at an angle a; = 90 ~ with the major axis of the ellipse (Problem 2); 
- -  Compression at an angle w = 0 with the major axis of the ellipse (Problem 3); 
- -  Compression at an angle w = 30 ~ with the major axis of the ellipse (Problem 4); 
- -  Compression at an angle w = 45 ~ (Problem 5); 
For the purpose  of comparison with the experimental data of [4], we approximate the parameter  L1 as 

follows. From the  gradient  strength criterion (1.1) and (1.2), for the momen t  of onset of fracture,  we have the 
relation (for fl = 1). 

= + L l g l ,  (4.1) 

where a~' is the circumferential  stress at the point where the fracture begins. This stress can be calculated by 
the nominal stress at the  moment  of onset of the fracture p* and the concentrat ion coefficient a at this point: 

r = p*a. (4.2) 
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TABLE 1 

No. 

Analytical solution 
Numerical solution (60 elements) 
(error, %) 
Numerical solution (360 elements) 
(error, %) 
Classical criterion 

Analytical solution 
Numerical solution (360 elements) 
(error, %) 
Numerical solution (600 elements) 
(error, %) 
Experimental results 
Classical criterion 

Analytical solution 
Numerical solution (360 elements) 
(error, %) 
Numerical solution (600 elements) 
(error, %) 
Experimental results 
Classical criterion 

Analytical solution 
Numerical solution (360 elements) 
(error, %) 
Numerical solution (600 elements) 
(error, %) 
Experimental results 
Classical criterion 

Analytical solution 
Numerical solution (360 elements) 
(error, %). 
Numerical solution (600 elements) 
(error, %) 
Experimental results 
Classical criterion 

~, deg 

0 
0 

(o) 
0 

(0) 
0 

0 
0 

(0) 
0 

(0) 
0 
0 

0 
0 

(0) 
0 

(0) 
0 
0 

59.144 
60.441 
(2.19) 
59.407 
(0.44) 
58.47 
55.087 

p*/O'b a gl, mm-I 

0.40369 
0.40304 
(0.16) 

0.40367 
(0.005) 
0.33333 

0.06667 
0.06554 
(1.70) 

0.06611 
(0.84) 

0.06667 
0.04762 

-1.5812 
-1.5398 
(2.62) 

-1.5613 
(1.26) 
-1.75 
-1.0 

-0.38856 
-0.39208 

(0.91) 
-0.39004 

(0.38) 
-0.55 

-0.33257 

-0.40020 
-0.40282 

(0.66) 
-0.40148 

(0.32) 
-0.57 

-0.36141 

3.0 
2.9999 
(0.003) 
3.0000 
(0.000) 

3.0 

21.0 
20.985 
(0.07) 
20.995 
(0.02) 

21.0 

-1.0 
-0.99864 

(0.14) 
-0.99955 

(0.05) 

-1.0 

-2.9510 
-2.9103 
(1.38) 

-2.9437 
(0.25) 

-3.0069 

-2.7347 
-2.7498 
(0.55) 

-2.7428 
(0.30) 

-2.7670 

0.46667 
0.46191 
(1.02) 

0.46654 
(0.03) 

32.246 
29.945 
(7.14) 
31.118 
(3.50) 

50.394 
45.835 
(9.05) 
48.219 
(4.32) 

10.575 
10.143 
(4.09) 
10.689 
(1.08) 

6.6446 
7.6252 
(14.8) 
7.1402 
(7.46) 

Note .  The experimental results were obtained by averaging the values over all the tests. 

Substituting (4.2) into (4.1), after certain manipulations, we obtain the equation for La 

(7 b / 

Upon tension of a glass plate at an angle w = 90 ~ with the major axis of the ellipse (Fig. 5), it was found 
experimentally [4, pp. 199, 200] that  p*/ab = 1/15. Fracture begins at the vertex of the ellipse, where the 
concentration coefficient is a = 1 + 2a/b = 21. Here a = 6.35 mm and b = 0.635 mm are the major and 
minor semiaxes of the ellipse. The relative gradient gl at the vertex is calculated from the formula [1]: gl = 
(a - 1)2(1 + 1/ (2a) ) / (2a)  = 32.246 mm -1. Substituting all the values into (4.3), we find nl = 0.029771 mm. 

The numerical solution of the problem was found by partitioning the boundary of the hole into 360 and 
600 boundary elements. A boundary-element grid was constructed in such a manner that the middle points 
of the elements lie at the axes of the ellipse. Calculations were performed for An  = 0.001 mm. A decrease in 
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An by a factor of 10 changes the results by no more than 0.12%. 
A n a l y s i s  of  Resu l t s .  In analyzing the results, we are interested in the following: 
- -  the direction of fracture which is determined by the angle T between the major axis of the ellipse 

and the normal to the contour at the point where the fracture begins; 
- -  the ratio of the nominal breaking load and the ult imate strength of the material p*/o'b; 
- -  the stress-concentration coefficient a at the point where the fracture begins; 
- -  the relative gradient of the tangential stress gl at the point where fracture begins. 
We compare the above-mentioned parameters, which were found numerically, with their values obtained 

from analytical solutions; we determine the relative (percent) errors of calculation of each value. The theoretical 
estimates which were found by the gradient strength criterion are also compared with the experimental data 
of [4]. Moreover, it is of interest to compare the experimental data with the results obtained by the classical 
strength criterion a~ nax = ab and the analytical solutions. All the results are listed in Table 1. 

A comparison of the numerical results with the analytical solutions shows that  the calculation error for 
the limiting load for 360 boundary elements does not exceed 3%, which is admissible in view of the difference 
between the theoretical and experimental data. As is seen from Table 1, the calculation errors decrease with 
increase in the number of elements. 

It is noteworthy that the theoretical results obtained with the use of the gradient strength criterion are 
closer to the experimental data than those obtained by means of the classical strength criterion a~ax = Orb. 

The accuracy of calculation of the relative gradient of the circumferential stress is always poorer than 
that of this stress. 

We also note that, in the asymmetric problems, the errors listed in Table 1 are mainly due to the 
fact that the middle point of any boundary element does not coincide with a point at the contour of the 
hole where, according to the analytical solution, fracture is expected to begin. For example, if the boundary- 
element grid in Problem 5 is constructed in such a manner  that the direction of the normal to one of the 
360 boundary elements coincides with the direction of fracture ~ = 67.248 ~ which was previously found from 
the analytical solution, the numerical method gives the stress-concentration coefficient a = -2.7354 and the 
relative gradient gl = 7.1028 mm -1. In comparison with the values given in Table 1, these results agree better 
with the analytical solution. 

C o n c l u s i o n s .  Using the gradient strength criterion and the boundary-element method, namely, 
the method of fictitious loads, we have developed a numerical algorithm for strength analysis of plane 
structural elements containing stress concentrators, which allows one to apply the gradient criterion to both 
demonstrative and practical problems with sufficient accuracy. 

This work deals with the problem formulated in the project of the Russian Foundation for Fundamental 
Research (Grant No. 98-05-65656). 
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